
HANDS ON WITH
CRASHSCOPE:

AN AUTOMATED ANDROID

TESTING TOOL

Kevin Moran,

Assistant Professor

George Mason University

Kevin Moran

Assistant Professor

George Mason University

Fairfax, VA, USA

kpmoran@gmu.edu

https://www.kpmoran.com

mailto:kpmoran@gmu.edu
https://www.kpmoran.com

PART 1: CURRENT RESEARCH & FUTURE WORK

PART 2: AN OVERVIEW OF CRASHSCOPE

PART 0: BACKGROUND AND CORE CONCEPTS

PART 4: HANDS-ON SESSION WITH CRASHSCOPE

PART 0: BACKGROUND & CORE
CONCEPTS

The Importance of GUI Testing

• Several different types of testing are important
for ensuring software quality:

The Importance of GUI Testing

Unit Testing Performance Testing

Regression Testing

Integration Testing

Compatibility Testing

• Several different types of testing are important
for ensuring software quality:

The Importance of GUI Testing

Unit Testing Performance Testing

Regression Testing

Integration Testing

Compatibility Testing

• Several different types of testing are important
for ensuring software quality:
• For Mobile, GUI-Based Testing subsumes many other types

of testing

• GUI-Testing is typically expensive, and test scripts are
difficult to maintain

• There is a clear opportunity for automation to Improve
development workflows

GUI Testing: The Main Idea

UI Events

GUI Testing: The Main Idea

UI Events

Oracle

GUI Testing: The Main Idea

Output, layout, exceptions,

presentation logic, quality attributes, …

UI Events

Oracle

Test

result

GUI Testing: Core Concepts

Oracle

GUI Testing: Core Concepts

Oracle Test

result

GUI Testing: Example

Detecting and Localizing Internationalization Presentation Failures in Web Applications. Abdulmajeed Alameer, Sonal Mahajan, William G.J. Halfond. In
Proceeding of the 9th IEEE International Conference on Software Testing, Verification, and Validation (ICST). April 2016.

GUI Testing: Example

Detecting and Localizing Internationalization Presentation Failures in Web Applications. Abdulmajeed Alameer, Sonal Mahajan, William G.J. Halfond. In
Proceeding of the 9th IEEE International Conference on Software Testing, Verification, and Validation (ICST). April 2016.

Inputs: combinatorial explosion

GUI Testing (Challenges)

Inputs: combinatorial explosion

GUI Testing (Challenges)

Inputs: combinatorial explosion

Internationalization

GUI Testing (Challenges)

Inputs: combinatorial explosion Internationalization

GUI Testing (Challenges)

Inputs: combinatorial explosion Internationalization

GUI Testing (Challenges)

Responsive design

Inputs: combinatorial explosion Internationalization

GUI Testing (Challenges)

Responsive design

Inputs: combinatorial explosion Internationalization

GUI Testing (Challenges)

Responsive design Unexpected usage scenarios

Inputs: combinatorial explosion Internationalization

GUI Testing (Challenges)

Responsive design Unexpected usage scenarios

MONKEY TESTING !!

MONKEY TESTING !!
AUTOMATED TESTING !!

Automated GUI Testing

Output, layout, exceptions, presentation
logic, quality attributes, …

UI Events

Monkey

ANDROID GUI TESTING

Unique Challenges in Mobile Development

Thousands of apps are released and

updated every day on the online store

apps - Google Play2.8M

downloads - Google Play65B

releases (Android) since 200825

Large volume of crowdsourced requirements

and ratings

Fragmentation at device and OS level

Pressure for continuous delivery

Manual testing is still preferred

Mobile-specific quality attributes, inputs, and
scenarios

PART 1: CURRENT RESEARCH &
FUTURE WORK

Overview of Tools & Services

Overview of Tools & Services

• Automation Frameworks & APIs

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

• Automated Input Generation Tools

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

• Automated Input Generation Tools

• Bug & Error Reporting

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

• Automated Input Generation Tools

• Bug & Error Reporting

• Crowdsourced Testing

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

• Automated Input Generation Tools

• Bug & Error Reporting

• Crowdsourced Testing

• Cloud Testing Services

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

• Automated Input Generation Tools

• Bug & Error Reporting

• Crowdsourced Testing

• Cloud Testing Services

• Device Streaming Tools

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

• Automated Input Generation Tools

• Bug & Error Reporting

• Crowdsourced Testing

• Cloud Testing Services

• Device Streaming Tools

}Traditional Android Testing

 Tools and Approaches

Overview of Tools & Services

• Automation Frameworks & APIs

• Record & Replay Tools

• Automated Input Generation Tools

• Bug & Error Reporting

• Crowdsourced Testing

• Cloud Testing Services

• Device Streaming Tools

}
}

Traditional Android Testing

 Tools and Approaches

Bug Reporting,

Crowdsourcing and Services

ANDROID TESTING TOOLS
& APPROACHES

Automation Frameworks/APIs (AF/A)

TESTS

JUnit, Espresso, UI Automator, Robotium

Monkey

Testing Automation Frameworks/APIs

UI Automator

Testing Automation Frameworks/APIs

https://github.com/googlesamples/android-testing

Testing Automation Frameworks/APIs

https://github.com/googlesamples/android-testing

Testing Automation Frameworks/APIs

https://github.com/googlesamples/android-testing

Testing Automation Frameworks/APIs

https://github.com/googlesamples/android-testing

Testing Automation Frameworks/APIs

https://github.com/googlesamples/android-testing

Testing Automation Frameworks/APIs

https://github.com/googlesamples/android-testing

Tools: Layout Inspector

Tools: Layout Inspector

Pros and Cons

Automation

Frameworks

✓ Easy reproduction

✓ High level syntax

✓ Black box testing

- Learning curve

- User-defined oracles

- Expensive maintenance

Record and Replay (R&R)

AUT/SUT

UI Events

Record and Replay (R&R)

AUT/SUT

UI Events

Recorder Script

Record and Replay (R&R)

AUT/SUT

UI Events

Recorder Script

Scripts

Record and Replay (R&R)

AUT/SUT

UI Events

Recorder Script

Scripts

UI Events

Monkey AUT/SUT

UI Events

Tools: ODBR

www.android-dev-tools.com/odbr

http://www.android-dev-tools.com/odbr

Tools: ODBR

www.android-dev-tools.com/odbr

http://www.android-dev-tools.com/odbr

Pros and Cons

Automation

Frameworks

✓ Easy reproduction

✓ High level syntax

✓ Black box testing

- Learning curve

- User-defi

- Expensive maintenance

Record &

Replay ✓ Easy reproduction

- Expensive collection and
maintenance

- Coupled to locations

Automated Input Generation (AIG) Techniques

Automated Input Generation (AIG) Techniques

• Differing Goals:

Automated Input Generation (AIG) Techniques

• Differing Goals:
• Code Coverage

Automated Input Generation (AIG) Techniques

• Differing Goals:
• Code Coverage
• Crashes

Automated Input Generation (AIG) Techniques

• Differing Goals:
• Code Coverage
• Crashes

• Three Main Types:

Automated Input Generation (AIG) Techniques

• Differing Goals:
• Code Coverage
• Crashes

• Three Main Types:
• Random-Based

Automated Input Generation (AIG) Techniques

• Differing Goals:
• Code Coverage
• Crashes

• Three Main Types:
• Random-Based
• Systematic

Automated Input Generation (AIG) Techniques

• Differing Goals:
• Code Coverage
• Crashes

• Three Main Types:
• Random-Based
• Systematic
• Model-Based

Random/Fuzz Testing (R/FT)

Monkey

X or Y ?

AUT/SUT

Random/Fuzz Testing (R/FT)

Monkey

X or Y ?

AUT/SUT

Event x

Invalid

Random/Fuzz Testing (R/FT)

Monkey

X or Y ?

AUT/SUT

Event x

Invalid

Event Y

Valid

Random/Fuzz Testing (R/FT)

./adb shell monkey -p com.evancharlton.mileage 10000

Random/Fuzz Testing (R/FT)

./adb shell monkey -p com.evancharlton.mileage 10000

Pros and Cons

Automation

Frameworks

✓ Easy reproduction

✓ High level syntax

✓ Black box testing

- Learning curve

- User-defi

- Expensive maintenance

Record &

Replay ✓ Easy reproduction

- Expensive collection and
maintenance

- Coupled to locations

AIG: Random

Based

✓ Fast execution

✓ Good at finding crashes

- Invalid events

- Lack of expressiveness

Aside: GUI Ripping

Ripper/Extractor ModelAUT/SUT Monkey

Aside: GUI Ripping

Ripper/Extractor ModelAUT/SUT Monkey

Snapshot 1

Aside: GUI Ripping

Ripper/Extractor ModelAUT/SUT Monkey

Snapshot 1
Snapshot 1

Aside: GUI Ripping

Ripper/Extractor ModelAUT/SUT Monkey

Snapshot 1
Snapshot 1 GUI State 1

Aside: GUI Ripping

Ripper/Extractor ModelAUT/SUT Monkey

Snapshot 1
Snapshot 1 GUI State 1

A or B ?

Aside: GUI Ripping

Ripper/Extractor ModelAUT/SUT Monkey

Snapshot 1
Snapshot 1 GUI State 1

Event 1

A or B ?

Aside: GUI Ripping

Ripper/Extractor ModelAUT/SUT Monkey

Snapshot 1
Snapshot 1 GUI State 1

Event 1

Snapshot 2 Snapshot 2
GUI State 2

A or B ?

GUI State extraction

Ripper/Extractor

Computer/Mobile device

OS

- Framework

- API

- Utilities

GUI State

Events

Monkey

GUI State extraction

Monkey

A or B ?

Systematic Exploration

Monkey

A or B ?

Breadth-First (BF)Depth-First (DF)

Systematic Exploration

Monkey

A or B ?

Breadth-First (BF)Depth-First (DF)

Random (Uniform) Random (A-priori distr.)

Other options (online decision)

Systematic Exploration

Tools: Google Robo Test

https://firebase.google.com/docs/test-lab/robo-ux-test

https://firebase.google.com/docs/test-lab/robo-ux-test

Pros and Cons

Automation

Frameworks

✓ Easy reproduction

✓ High level syntax

✓ Black box testing

- Learning curve

- User-defi

- Expensive maintenance

Record &

Replay ✓ Easy reproduction

- Expensive collection and
maintenance

- Coupled to locations

AIG: Random

Based

✓ Fast execution

✓ Good at fi

- Invalid events

- Lack of expressiveness

AIG:

Systematic

✓ Achieves Reasonable Coverage

✓ May miss crashes

- Can be time consuming

- Typically cannot

exercise complex
features

Model-Based Testing (MBT)

UI Events

Model Monkey AUT/SUT

Model-Based Testing (MBT)

UI Events

Model Monkey AUT/SUT

- Manually generated

- Automatically generated (source code)

- Ripped at runtime (upfront)

- Ripped at runtime (interactive)

Pros and Cons

Automation

Frameworks

✓ Easy reproduction

✓ High level syntax

✓ Black box testing

- Learning curve

- User-defi

- Expensive maintenance

Record &

Replay ✓ Easy reproduction

- Expensive collection and
maintenance

- Coupled to locations

AIG: Random

Based

✓ Fast execution

✓ Good at fi

- Invalid events

- Lack of expressiveness

AIG:

Systematic

✓ Achieves Reasonable Coverage

✓ May miss crashes

- Can be time consuming

- Typically cannot exercise

complex features

AIG: Model

Based

✓ Event sequences

✓ Automatic exploration

- Some Invalid sequences

- State Explosion

- Incomplete models

Other Types of AIG Approaches

• Recently New Approaches have been introduced for AIG:

• Search-Based Approaches1

• Symbolic/Concolic Execution2

1Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: multi-objective automated testing for Android applications. In Proceedings of
the 25th International Symposium on Software Testing and Analysis (ISSTA 2016)

2Nariman Mirzaei, Joshua Garcia, Hamid Bagheri, Alireza Sadeghi, and Sam Malek. 2016. Reducing combinatorics in GUI testing
of android applications. In Proceedings of the 38th International Conference on Software Engineering (ICSE '16)

Extending Research to XR/AR/VR apps

Extending Research to XR/AR/VR apps

Extending Research to XR/AR/VR apps

Main Challenge 1: Interfacing with and fetching GUI information

Extending Research to XR/AR/VR apps

Extending Research to XR/AR/VR apps

Main Challenge 2: Generating meaningful inputs

Extending Research to XR/AR/VR apps

Extending Research to XR/AR/VR apps

Main Challenge 3: Understanding & Detecting Failures

Automatically Discovering, Reporting and Reproducing
Android Application Crashes with CrashScope

CrashScope Publication

Categories of automated testing approaches for
Mobile apps

• Model-based input generation

• Random-based input generation

• Record and replay

• Others (Manual Testing Frameworks)

The Current State of Automated Mobile Testing

Tool Name Instr. GUI Exploration Types of Events Crash Resilient Replayable Test
Cases

NL Crash Reports Emulators, Devices

Dynodroid Yes Guided/Random System, GUI, Text Yes No No No

EvoDroid No System/Evo GUI No No No N/A
AndroidRipper Yes Systematic GUI, Text No No No N/A

MobiGUItar Yes Model-Based GUI, Text No Yes No N/A
A3E DFS Yes Systematic GUI No No No Yes

A3E Targeted [20] Yes Model-Based GUI No No No Yes
Swifthand Yes Model-Based GUI, Text N/A No No Yes

PUMA Yes Programmable System, GUI, Text N/A No No Yes
ACTEve
 Yes Systematic GUI N/A No No Yes

VANARSena Yes Random System, GUI, Text Yes Yes No N/A
Thor Yes Test Cases Test Case Events N/A N/A No No

QUANTUM Yes Model-Based System, GUI N/A Yes No N/A
AppDoctor Yes Multiple System, GUI, Text Yes Yes No N/A

ORBIT No Model-Based GUI N/A No No N/A
SPAG-C No Record/Replay GUI N/A N/A No No

JPF-Android No Scripting GUI N/A Yes No N/A
MonkeyLab No Model-based GUI, Text No Yes No Yes
CrashDroid No Manual Rec/Replay GUI, Text Manual Yes Yes Yes
SIG-Droid No Symbolic GUI, Text N/A Yes No N/A

CrashScope No Systematic GUI, Text, System Yes Yes Yes Yes

The Current State of Automated Mobile Testing

Tool Name Instr. GUI Exploration Types of Events Crash Resilient Replayable Test
Cases

NL Crash Reports Emulators, Devices

Dynodroid Yes Guided/Random System, GUI, Text Yes No No No

EvoDroid No System/Evo GUI No No No N/A
AndroidRipper Yes Systematic GUI, Text No No No N/A

MobiGUItar Yes Model-Based GUI, Text No Yes No N/A
A3E DFS Yes Systematic GUI No No No Yes

A3E Targeted [20] Yes Model-Based GUI No No No Yes
Swifthand Yes Model-Based GUI, Text N/A No No Yes

PUMA Yes Programmable System, GUI, Text N/A No No Yes
ACTEve
 Yes Systematic GUI N/A No No Yes

VANARSena Yes Random System, GUI, Text Yes Yes No N/A
Thor Yes Test Cases Test Case Events N/A N/A No No

QUANTUM Yes Model-Based System, GUI N/A Yes No N/A
AppDoctor Yes Multiple System, GUI, Text Yes Yes No N/A

ORBIT No Model-Based GUI N/A No No N/A
SPAG-C No Record/Replay GUI N/A N/A No No

JPF-Android No Scripting GUI N/A Yes No N/A
MonkeyLab No Model-based GUI, Text No Yes No Yes
CrashDroid No Manual Rec/Replay GUI, Text Manual Yes Yes Yes
SIG-Droid No Symbolic GUI, Text N/A Yes No N/A

CrashScope No Systematic GUI, Text, System Yes Yes Yes Yes

What are the limitations of current
automated approaches?

Limitations of Automated Mobile Testing and
Debugging

• Lack of detailed, easy to understand testing results for faults/crashes1

• No easy way to reproduce test scenarios1

• Not practical from a developers viewpoint

• Few approaches enable different strategies capable of generating
text and testing contextual features

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are
we there yet? In 30th IEEE/ACM International Conference on Automated Software

Engineering (ASE 2015), 2015

Past Studies of Mobile Bugs and Crashes

• Many crashes can be mapped to well-defined, externally inducible
faults1

• Contextual features, such as network connectivity and screen
rotation, account for many of these externally inducible faults12

• These dominant root causes can affect many different user
execution paths1

1L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic and scalable fault detection for mobile applications. MobiSys ’14
2R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated generation of oracles for testing user-interaction features of mobile apps, ICST ’14

Our Solution: CRASHSCOPE

• Completely automated approach

• Generates detailed, expressive bug reports and replayable scripts

• A practical tool, requiring no instrumentation framework, or
modification to the OS or applications

• Capable of running on both physical devices and emulators

• Differing execution strategies able to test contextual features

CRASHSCOPE: Design

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

CRASHSCOPE: Design

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

1

CRASHSCOPE: Design

CrashScope
Database

Static Analysis
(Contextual Feature

Extraction)

GUI-Ripping Engine

Physical Device or Emulator

.apk

app
src

or

Android
Application

Report Generation

Crash-Execution
Script Generator

Crash-Execution
Script Replayer

1

2

3

4 5

1
II

CRASHSCOPE: Analysis

GUI Ripping Engine

.apk

or

app
src

Physical Device or Emulator

Augmented Natural Language Report Generator

Android
UIAutomator

Event Execution
Engine

(adb input &
telnet)

—Touch Event
—GUI Component

Information
—Screenshots

Crash after
last step?

YesNo

Execution
Finished?

No Yes

Decision Engine

Determine next
<Action, GUI>

Event to Execute

Enable/Disable
Activity/App

Features

Crash Execution Script Generator

Web Based
Application Bug Report

(JSP, MySQL, and
Bootstrap)

Crash Execution Script Replayer

Googlehttp://cs.wm.edu/semeru
CrashScope Report

Database
Parser

CrashScope
Script

Generator

Replay
Script
Parser

Contextual
Event

Interperter /
adb Replayer

Physical Device
or Emulator

Contextual Event
Execution
(telnet

commands)

Event Execution
Engine

(adb sendevent
& adb input)

Save
Execution

Information

4

5

6 7

2

Continue
Execution

CrashScope
Database

3

 Step
Processor

Database
Parser

App
Executions
Containing
Crashes

Replay Script Tuples
<adb shell input tap 780 1126>
<adb shell input text ‘abc!@#’>

<Disable_Network>
<Disable_GPS>

App
Executions
Containing
Crashes

Contextual Feature Extractor1

.apk
decompiler

(if necessary)

Android
Application

Manifest File
Parser API Extractor

Rotatable
Activities

App and
Activity Level
Contextual
Features

App and
Activity Level
Contextual
Features

CRASHSCOPE: Exploration

• GUI-Traversal: Top-Down & Bottom Up

• Text Entry: Expected, Unexpected, No Text

• Contextual Features: Enabled or Disabled

CRASHSCOPE: Report and Script Generation

Augmented Natural Language Report Generator

Crash Execution Script Generator

Web Based
Application Bug Report

(JSP, MySQL, and
Bootstrap)

Crash Execution Script Replayer

Googlehttp://cs.wm.edu/semeru
CrashScope Report

Database
Parser

CrashScope
Script

Generator

Replay
Script
Parser

Contextual
Event

Interperter /
adb

Replayer
Physical Device

or Emulator
Contextual

Event Execution
(telnet

commands)

Event Execution
Engine

(adb sendevent &
adb input)

4

5

6 7

CrashScope
Database

3

 Step
Processor

Database
Parser

App
Executions
Containing
Crashes

Replay Script Tuples
<adb shell input tap 780 1126>
<adb shell input text ‘abc!@#’>

<Disable_Network>
<Disable_GPS>

App
Executions
Containing
Crashes

CRASHSCOPE: Exploration Demo

CRASHSCOPE: Exploration Demo

CRASHSCOPE: Reports

CRASHSCOPE: Reports

CRASHSCOPE: Reports

CRASHSCOPE: Reports

CRASHSCOPE: Reports

CRASHSCOPE: Reports

Evaluation

• Two Empirical Studies

• Study 1: Crash Detection Capabilities

• Study 2: Crash Report Reproducibility and
Readability

Study 1: Crash Detection & Coverage

• RQ1: Crash Detection Effectiveness? 

• RQ2: Orthogonality of Crashes? 

• RQ3: Effectiveness of Individual Strategies? 

• RQ4: Does Crash Detection Correlate with Code
Coverage?

Study 1:Experimental Setup

• 61 subject applications from the Androtest1 toolset

• Each testing tool was run 5 separate times for 1 hour,

whereas CrashScope ran through all strategies

• Monkey was limited by the number of events

Tool Name Android Version Tool Type

Monkey Any Random

A3E Depth-First Any Systematic

GUI-Ripper Any Model-Based

Dynodroid v2.3 Random-Based

PUMA v4.1+ Random-Based

Tools Used In The
Comparative Fault

Finding Study

1S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for Android: Are we there
yet? In 30th IEEE/ACM International Conference on Automated Software Engineering (ASE 2015), 2015

Study 1: Crash Results

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard
 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery
 0 0 0 0 1 0

D&C
 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

Unique Crashes Discovered With Instrumented Crashes in Parentheses

Study 1: Crash Results

App A3E GUI- Ripper Dynodroid PUMA Monkey (All) CrashScope
A2DP Vol 1 0 0 0 0 0

aagtl 0 0 1 0 1 0
Amazed 0 0 0 0 1 0
HNDroid 1 1 1 2 1 1

BatteryDog 0 0 1 0 1 0
Soundboard
 0 1 0 0 0 0

AKA 0 0 0 0 1 0
Bites 0 0 0 0 1 0

Yahtzee 1 0 0 0 0 1
ADSDroid 1 1 1 1 1 1

PassMaker 1 0 0 0 1 1
BlinkBattery
 0 0 0 0 1 0

D&C
 0 0 0 0 1 0
Photostream 1 1 1 1 1 0
AlarmKlock 0 0 1 0 0 0

Sanity 1 1 0 0 0 0
MyExpenses 0 0 1 0 0 0

Zooborns 0 0 0 0 0 2
ACal 1 2 2 0 1 1

Hotdeath 0 2 0 0 0 1
Total 8 (21) 9 (5) 9 (6) 4 (0) 12 (1) 8 (0)

Unique Crashes Discovered With Instrumented Crashes in Parentheses

Study 1: Statement Coverage Results

●

●

CrashScope
Puma

GUI−Ripper
Dynodroid

A3E
Monkey−100
Monkey−200
Monkey−300
Monkey−400
Monkey−500
Monkey−600
Monkey−700

0 20 40 60 80

Average Statement Coverage Results for the Comparative Study

Reported in Average %

Study 1: Statement Coverage Results

●

●

CrashScope
Puma

GUI−Ripper
Dynodroid

A3E
Monkey−100
Monkey−200
Monkey−300
Monkey−400
Monkey−500
Monkey−600
Monkey−700

0 20 40 60 80

Average Statement Coverage Results for the Comparative Study

Reported in Average %

Study 1: Summary of Findings

• RQ1: CrashScope is nearly as effective at discovering
crashes as the other tools, without reporting crashes
caused by instrumentation

• RQ2&3: CrashScope’s differing strategies led to the
discovery of unique crashes

• RQ4: Higher statement coverage does not necessarily
correspond with crash detection capabilities

Study 2: Reproducibility & Readability

• RQ5: Reproducibility of CrashScope Reports? 
 

• RQ6: Readability of CrashScope Reports? 

Study 2: Experimental Setup

• 8 Real-World Crash
Reports from Open Source
Apps

• 16 Graduate Students
from the College of
William & Mary 

Application Name # of Reproduction Steps

BMI 4

Schedule 7

adsdroid 2

Anagram-solver 7

Eyecam 14

GNU Cash 29

Olam 2

CardGame Scores 23

• Each student attempted to reproduce 8 bugs: 4 from
the original reports, 4 from CrashScope Reports

• Participants used a Nexus 7 tablet for reproduction

Study 2: Reproducibility Results

Type of Crash Report # of Total/Non-
Reproducible Reports

Original Bug Reports 59/64

CrashScope Bug
Reports 60/64

0.91

0.918

0.925

0.933

0.94

Original CrashScope
% of Bug Reports Reproduced by Type

Study 2: Readability Results

Question CrashScope Mean CrashScope StdDev Original Mean Original StdDev

UX1: I think I would like to have this type of bug
report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report was easy
to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report very
cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very useful
for reproducing the crash.
 4.13 0.62 3.44 0.89

Study 2: Readability Results

Question CrashScope Mean CrashScope StdDev Original Mean Original StdDev

UX1: I think I would like to have this type of bug
report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report was easy
to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report very
cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very useful
for reproducing the crash.
 4.13 0.62 3.44 0.89

Study 2: Readability Results

Question CrashScope Mean CrashScope StdDev Original Mean Original StdDev

UX1: I think I would like to have this type of bug
report frequently. 4.00 0.89 3.06 0.77

UX2: I found this type of bug report
unnecessarily complex. 2.81 1.04 2.125 0.96

UX3: I thought this type of bug report was easy
to read/understand. 4.00 0.82 3.00 0.97

UX4: I found this type of bug report very
cumbersome to read. 2.50 1.10 2.44 0.81

UX5: I thought the bug report was very useful
for reproducing the crash.
 4.13 0.62 3.44 0.89

Study 2: Summary of Findings

• RQ5: Reports generated by CrashScope are about as
reproducible as human written reports extracted from
open-source issue trackers 
 

• RQ6: Reports generated by CrashScope are more readable
and useful from a developers’ perspective compared to
human-written reports. 

CRASHSCOPE: A Practical Tool

CRASHSCOPE: A Practical Tool

THANK YOU !!

QUESTIONS/DISCUSSION?

kpmoran@gmu.edu

mailto:kpmoran@gmu.edu

Hands-On Session

https://sagelab.io/crashscope-tutorial/

https://sagelab.io/crashscope-tutorial/

Discussion Questions

• Potential solutions to challenges we covered?

• Other future research directions?

• How can mobile testing techniques cope with AR/
VR environments?

